Redox regulation of mitochondrial sulfide oxidation in the lugworm, Arenicola marina.
نویسندگان
چکیده
Sulfide oxidation in the lugworm, Arenicola marina (L.), is most likely localized in the mitochondria, which can either produce ATP with sulfide as a substrate or detoxify it via an alternative oxidase. The present study identified selective activators of the energy-conserving and the detoxifying sulfide oxidation pathways respectively. In the presence of the ROS scavengers glutathione (GSH) and ascorbate, isolated lugworm mitochondria rapidly oxidized up to 100 micromoll(-1) sulfide with maximal oxygen consumption rates but did not produce any ATP in the process. Under these conditions, salicylhydroxamic acid (SHAM), which is an inhibitor of the alternative oxidase of plant mitochondria, completely blocked oxygen consumption whereas inhibitors of complex III and IV had hardly any effect. By contrast, dehydroascorbate (DHA) enabled the mitochondria to gain ATP from sulfide oxidation even if the sulfide concentration far exceeded the threshold for inhibition of cytochrome oxidase. In the presence of dehydroascorbate, respiratory rates were independent of sulfide concentrations, with a respiratory control ratio of 2.1+/-0.2, and both oxygen consumption and ATP production were completely inhibited by myxothiazol and sodium azide but only marginally by SHAM. The present data indicate that a redox mechanism may contribute to the regulation of sulfide oxidation in lugworm mitochondria in vivo. Thus, mitochondria are presumably much more sulfide resistant in a cellular context than previously thought.
منابع مشابه
Sulfide : quinone oxidoreductase (SQR) from the lugworm Arenicola marina shows cyanide- and thioredoxin-dependent activity.
The lugworm Arenicola marina inhabits marine sediments in which sulfide concentrations can reach up to 2 mM. Although sulfide is a potent toxin for humans and most animals, because it inhibits mitochondrial cytochrome c oxidase at micromolar concentrations, A. marina can use electrons from sulfide for mitochondrial ATP production. In bacteria, electron transfer from sulfide to quinone is cataly...
متن کاملThe effect of hydrogen peroxide on isolated body wall of the lugworm Arenicola marina (L.) at different extracellular pH levels.
The effect of hydrogen peroxide on the rate of tissue oxygen consumption, on intracellular pH (pH(i)) and on malondialdehyde (MDA) accumulation was studied in isolated body wall tissue of the lugworm Arenicola marina (L.). H2O2 effects were investigated at various levels of pH(i) by changing medium pH (pH(e)). The largest decrease of tissue oxygen consumption (by 17% below controls), as well as...
متن کاملEffects of the bioturbating lugworm Arenicola marina on the structure of benthic protistan communities
Sedimentary coastal ecosystems like the European Wadden Sea in the northeastern Atlantic harbor large populations of burrowing infauna, such as arenicolide polychaetes. These ‘ecosystem engineering’ macrofaunal organisms destabilize sediments by reworking and irrigating them, leading to a reorganization of sediment physicochemical state and bacterial communities. Here, we tested the effects of ...
متن کاملMetabolic cold adaptation in the lugworm Arenicola marina: comparison of a North Sea and a White Sea population
Mitochondrial mechanisms, which may define and adjust an organism’s thermal tolerance window to the environmental temperature regime, were studied in 2 intertidal populations of the polychaete worm Arenicola marina (L.) from the North Sea (boreal) and the White Sea (subpolar). Adaptation to lower mean annual temperatures in the subpolar White Sea population (4 vs 10°C in the North Sea) was refl...
متن کاملEffects of Bioadvection by Arenicola marina on Microphytobenthos in Permeable Sediments
We used hyperspectral imaging to study short-term effects of bioturbation by lugworms (Arenicola marina) on the surficial biomass of microphytobenthos (MPB) in permeable marine sediments. Within days to weeks after the addition of a lugworm to a homogenized and recomposed sediment, the average surficial MPB biomass and its spatial heterogeneity were, respectively, 150-250% and 280% higher than ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 211 Pt 16 شماره
صفحات -
تاریخ انتشار 2008